

FRAUNHOFER-INSTITUT FÜR SOLARE ENERGIESYSTEME ISE

MODULHANDBUCH

CAS »Speicher im Intelligenten Netz«

IN WISSENSCHAFTLICHER KOOPERATION MIT

MODULHANDBUCH

CAS »Speicher im Intelligenten Netz«

DR.-ING. BERNHARD WILLE-HAUSSMANN JEANETTE KRISTIN WEICHLER, M.SC.

Fraunhofer-Institut für Solare Energiesysteme ISE in Freiburg im Breisgau.

weiterbildung@ise.fraunhofer.de

Stand: August 2017

ANMERKUNG

Das vorliegende Modulhandbuch bietet eine detaillierte Übersicht über die geplanten Inhalte und Methoden, erhebt allerdings nicht den Anspruch auf Vollständigkeit. Des Weiteren bleiben Abänderungen den veranstaltenden Verantwortlichen vorbehalten.

Das diesem Modulhandbuch zugrundeliegende Vorhaben wurde mit Mitteln des Bundesministeriums für Bildung, und Forschung unter dem Förderkennzeichen [16OH12056] gefördert. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt beim Autor/bei der Autorin.

IN WISSENSCHAFTLICHER KOOPERATION MIT

Inhaltsverzeichnis

1 Funktion des Modulhandbuchs	4
2 Projektvorstellung	5
2.1Das Verbundprojekt	
3 Die Lernplattform »ILIAS«	8
4 Das CAS-Modul »Speicher im Intelligenten Netz«	9
5 Modulverlaufsplan	11
6 Lernziele des CAS-Moduls »Speicher im Intelligenter Netz«	
7 Aufbau der einzelnen Lerneinheiten	13
8 Organisatorische Modalitäten	14
8.1 Leistungspunkte (Credit Points, CP)	
8.3 Vorkenntnisse	
9 Prüfungsordnung des CAS-Moduls »Speicher im Integenten Netz«	
9.1 Prüfungen, Prüfungszulassungsvoraussetzungen, Bonuspunktesystem	15

Notenschlussel
10 Gesamtübersicht über das CAS-Modul
»Speicher im Intelligenten Netz»
11
Darstellung der einzelnen Lerneinheiten des CAS-Modul
»Speicher im Intelligenten Netz»
12
Anhang33
Aimang

Funktion des Modulhandbuchs

Ein Modulhandbuch informiert sowohl die Lehrenden als auch die Lernenden – aus zwei verschiedenen Blickwinkeln – über das Zertifikatsmodul und dessen Ziele. Da die Zertifikats-Weiterbildung »Speicher im Intelligenten Netz« im Blended-Learning-Format präsentiert wird und die dozierenden Lernbegleiter in der Entwicklung des Studiengangs inhaltlich involviert sind, wird das vorliegende Modulhandbuch vor allem für die Modulteilnehmenden informativen Charakter aufweisen. Neben Informationen über die inhaltlichen Aspekte, wird eine konkrete Einteilung der Lerneinheiten und der Prüfungsmodalitäten gegeben. Der methodische Ansatz ist in Blended- Learning-Formaten von großer Bedeutung, da er neben der Motivationserhaltung auch für einen nachhaltigen und effektiven Lernprozess zuständig ist. Deshalb soll im Rahmen des vorliegenden Modulhandbuchs der genaue Verlaufsplan jeder Lerneinheit vorgestellt werden inklusive der geplanten methodischen Umsetzungen, damit ein realistisches Abbild des Weiterbildungsmoduls »Speicher im Intelligenten Netz« geschaffen werden kann.

Projektvorstellung

2.1

Das Verbundprojekt

Das Projekt »Freiräume für wissenschaftliche Weiterbildung – Windows for Continuing Education«, in dem die Zertifikatsweiterbildung »Energiesystemtechnik« angesiedelt ist, ist ein Verbundprojekt zwischen der Albert-Ludwigs-Universität Freiburg, dem Fraunhofer-Institut für Solare Energiesysteme ISE, dem Fraunhofer-Institut für Kurzzeitdynamik, Ernst-Mach-Institut, EMI und der Fraunhofer Academy. Innerhalb des Wettbewerbs des Bundesministeriums für Bildung und Forschung (BMBF) »Aufstieg durch Bildung: offene Hochschulen« wird das Verbundprojekt gefördert, wobei die Koordination der Freiburger Akademie für Universitäre Weiterbildung (FRAUW) obliegt.

Folgende Ziele des Verbundprojektes wurden festgehalten und werden langfristig verfolgt:

- Die Entwicklung eines modular aufgebauten und inhaltlich weit gefächerten wissenschaftlichen Weiterbildungsangebots (in Anlehnung an das Baukastenprinzip der Swissuni).
- Die Entwicklung und Erprobung eines forschungsbasierten und bedarfsorientierten Angebots wissenschaftlicher Weiterbildung, die eng mit der Forschung und Entwicklung verknüpft ist und mittels der Freiburger Academy of Science and Technology (FAST) realisiert werden soll.

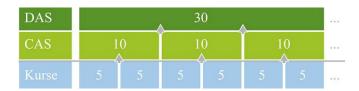


Abb. 1: Baukastenprinzip, das dem Projekt »Freiräume für wissenschaftliche Weiterbildung - Windows for Continuing Education« zugrunde liegt

Basierend auf der Kooperation zwischen der Albert-Ludwigs-Universität Freiburg (www. uni-freiburg.de) und der Swissuni (www.swissuni.ch) liegt der Entwicklung der modular aufgebauten Weiterbildungsangebote eine Anlehnung an das anerkannte Baukastenprinzip der Universitären Weiterbildung der Schweiz, Swissuni, zugrunde (vgl. Abbildung 1). Die Weiterbildungsabschlüsse werden nach etablierten Qualitätsstandards und Formaten gestaltet. Die vorhandenen Module können bausteinartig miteinander kombiniert werden und führen zu den Weiterbildungsabschlüssen

- Certificate of Advanced Studies (CAS)
- Diploma of Advanced Studies (DAS)

Um ein Weiterbildungs-Zertifikat zu erhalten, können die Studierenden zwei Kurse (5 CP) einer zugelassenen Profillinie zu einem CAS kombinieren; drei CAS ergeben ein DAS.

Eine große Handlungs- und Entscheidungsfreiheit in der Kurswahl gegenüber den Studierenden ermöglicht die Weiterbildung in vielen unterschiedlichen Bereichen.

2.2

Das Teilvorhaben des Fraunhofer ISE

Der erhöhte Fachkräftemangel in den MINT-Berufen (**M**athematik, Informatik, **N**aturwissenschaft, **T**echnik), vor allem im Bereich der hochaktuellen Thematiken Energiespeicher, Intelligente Energienetze, Solarthermie und Speicher im Intelligenten Netz, veranlasste und bestätigte das Fraunhofer ISE an der Partizipation des Projektes. Im Teilvorhaben »Energiesystemtechnik« entwickelt das Fraunhofer ISE praxis- und forschungsnahe Weiterbildungsmodule.

Durch eine Zielgruppenanalyse kristallisierten sich drei Personengruppen heraus, die das Weiterbildungsangebot »Energiesystemtechnik« ansprechen soll:

- Zielgruppe 1a (ZG 1a)
 - Hochschulabsolventen mit Bachelor-Abschluss in einem MINT-Studiengang
- Zielgruppe 1b (ZG 1b)
 - Auszubildende mit Meisterdiplom/-brief aus dem MINT-Bereich
- Zielgruppe 1c (ZG 1c)
 - Staatlich geprüfte Absolventen und Fachkräfte aus dem technischen Bereich
- Zielgruppe 2 (ZG 2)
 - Personen mit ähnlichen Qualifikationen aus ähnlichen Fachbereichen (vor einer Zulassung erfolgt für diese Zielgruppe eine Eignungsprüfung in einem persönlichen oder telefonischen Gespräch)

Des Weiteren ist eine mindestens zweijährige Berufserfahrung im MINT-Bereich Voraussetzung für die Zulassung zur Teilnahme an einem der Module der Zertifikatsweiterbildung »Energiesystemtechnik«.

Die Vermittlung der Lerninhalte geschieht im Blended-Learning-Format mit einem hohen Anteil von Online-Phasen. Während der Online-Phasen werden die Teilnehmenden tutoriell in ihrem Lernprozess unterstützt und begleitet. Zusätzlich finden neben der Online-Betreuung Online-Meetings, Online-Selbsttests und Online-Diskussionsrunden statt. Eine derartige Umsetzung des Weiterbildungsangebots hat zum einen die Vereinbarkeit von Beruf, Familie und Weiterbildung zum Ziel. Zum anderen soll dieses Konzept den Teilnehmenden eine möglichst große Flexibilität im individuellen Lernprozess ermöglichen.

Folgende Modulstruktur liegt dem Zertifikats-Studiengang »Energiesystemtechnik« zugrunde:

CAS-Modul IEN 10 CP	CAS-Modul ST 10 CP	CAS-Modul ESA 10 CP	CAS-Modul SIN 10 CP
Intelligente Energienetze	Solarthermie	Energiesystem- analyse	Speicher im intelligenten Netz

3 Module (je nach Profil-/Kompetenzlinie) ergeben ein DAS - Diploma of Advanced Studies - 30 CP

Abb. 2: Schematische Darstellung der Modulstruktur des DAS-Weiterbildungsangebots »Energiesystemtechnik« mit Angabe der Leistungspunkte (Credit Points, CP)

Die Lernplattform »ILIAS«

Das Learning Management System LMS, mit dem das wissenschaftliche Weiterbildungsangebot »Energiesystemtechnik« im Blended-Learning-Format implementiert und präsentiert wird, ist die Open-Source-Software ILIAS (Integriertes Lern-, Informationsund Arbeitskooperationssystem). ILIAS hat sich im deutschsprachigen Raum weit verbreitet: Viele Universitäten und Hochschulen arbeiten flächendeckend mit der Software, um den Studierenden und Teilnehmenden Material und Informationen zur Verfügung stellen zu können, aber auch in Unternehmen wird ILIAS im Rahmen von Trainingssystemen zur Mitarbeiterfortbildung genutzt. Seit dem Entwicklungsstart 1997 (seit 2000 Open-Source-Software) wurden sowohl die möglichen Funktionen als auch die Anwendungsmöglichkeiten in Zusammenarbeit mit mehreren Hochschulen überarbeitet und erweitert. Heute hat ILIAS ein großes Spektrum an Funktionen, die das E-Learning abwechslungsreich, aktivierend und motivationserhaltend gestalten. Neben Diskussionsforen, Glossaren, Wikis, Bibliotheken, Blogs, Peer Feedbacks, Portfolios, interaktive Videos, Lernorte, Mails und Chats können Etherpads genutzt und Gruppen innerhalb des Moduls gebildet werden¹. Die Universität Freiburg hat zudem die Online-Meeting-Software Adobe Connect in ILIAS eingebunden. Des Weiteren besteht für die Modulteilnehmenden die Möglichkeit mittels mobiler Endgeräte auf die ILIAS-Plattform und die Online-Meetingräume zuzugreifen.

¹ Siehe auch: Kunkel, Matthias: Das offizielle ILIAS 4-Praxisbuch: Gemeinsam online lernen, arbeiten und kommunizieren, München: Addison-Wesley Verlag, 2011

Das CAS-Modul »Speicher im Intelligenten Netz«

Das Weiterbildungsangebot »Speicher im Intelligenten Netz«, das vor dem Hintergrund des Wandels in der Energieversorgung vom Fraunhofer ISE gemeinsam mit der Universität Freiburg und der Fraunhofer Academy entwickelt wird, bietet die Möglichkeit technische und ökonomische Kompetenzen in einem hochaktuellen Themenfeld mittels eines systemischen Ansatzes zu erwerben.

Die Schwerpunkte dieser Weiterbildung reichen von den Speichertechnologien bis hin zu der Einbindung und Anwendung von Speichern in intelligenten Energienetzen. Des Weiteren werden Betriebsstrategien von Speichern vorgestellt und diskutiert. Die Inhalte werden basierend auf aktuellen Ergebnissen aus der angewandten Energieforschung praxisnah vermittelt.

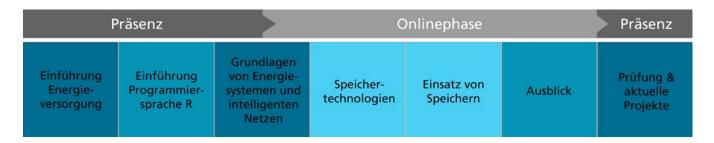
Die anteilig steigende Stromgewinnung mittels fluktuierender Energiequellen, wie beispielsweise Wind oder Sonne, stellt aufgrund der Wetterabhängigkeit eine große Herausforderung dar. Demzufolge wird ein Ausgleich benötigt, um das Stromangebot und die Stromnachfrage synchronisieren zu können. Um den Herausforderungen der Energiewende zu begegnen, ist die Entwicklung neuer Lösungsansätze für eine zukünftige Gestaltung des Stromnetzes entscheidend. Die Integration von Stromspeichern in das intelligente Energienetz ist eine vielversprechende Lösung für die zukünftige Gestaltung des Stromnetzes.

Das CAS Modul »Speicher im Intelligenten Netz« ist in die vier Hauptthemenbereiche »Grundlagen der Energieumwandlung und Energiespeicher«, »Speichertechnologien«, »Anwendung von Speichern im System« und »Betriebsstrategien von Speichern« gegliedert. Ein Ausblick auf die Themen »Kommunikative Einbindung von Speichern« und »Thermische Solarenergie« schließt das Modul ab.

Die Inhalte sind in der Abbildung 3 veranschaulicht.

In der ersten Lerneinheit erhalten die Teilnehmenden eine Einführung in die Energieversorgung, sodass sie ein Grundverständnis über die Komponenten der Energieerzeugung, des Energietransports und über die Bedeutung der Einbindung von Speichern erlangen. In der zweiten Lerneinheit wird eine praktische Einführung in die Programmiersprache R gegeben, mit welcher – im weiteren Verlauf des Moduls – einfache Analysen und Simulationen von Energiesystemen gerechnet und durchgeführt werden. Die dritte Lerneinheit beinhaltet die Grundlagen von Energiespeichersystemen und intelligenten Netzen. Diese Lerneinheit dient der Wiederholung und Auffrischung von Kenntnissen über Energieformen, Lastprofile, Jahresdauerkennlinie, Residuallast, Autarkiegrad etc. In der vierten Lerneinheit zur Klassifizierung von Speichertechnologien werden grundlegende Aspekte von Energiespeichern behandelt, indem auf den Speicherbedarf, verschiedene Speicherarten und wichtige Kenngrößen zur Bewertung von Speichertechnologien eingegangen wird. Die fünfte Lerneinheit »Systemintegration von Speichern« zielt auf ein Verständnis der Wechselrichtertechnik sowie wichtiger Aspekte der Netzintegration ab, indem verschiedene Stromrichtermodelle und Speicherintegrationskonzepte vorgestellt und miteinander verglichen werden. Die folgenden vier Lerneinheiten »Elektrochemische Speicher«, »Thermische Speicher«, »Chemische Speicher« und »Andere Speicher« (inkl. elektrische und mechanische Speicher) stellen eine Vertiefung von speziellen Speicherarten dar. Zuerst werden jeweils spezifische Grundlagen, Charakteristika und Klassifikationen behandelt und einzelne Technologien detaillierter vorgestellt. Anschließend gibt es eine Einführung in entsprechende Speichermodellierungen. Die Teilnehmenden sind anschließend in der Lage, die verschiedenen Speicherarten mit ihren spezifischen vor- und Nachteilen miteinander zu vergleichen.

	Lerneinheiten		
Grundlagen		Einführung Energieversorgung	
	2	Einführung Programmiersprache R	
	3	Grundlagen von Energiesystemen und intelligenten Netzen	
Speicher-	4	Klassifizierung von Speichertechnologien	
technologien	5	Systemintegration von Speichern	
	6	Elektrochemische Speicher	
	7	Thermische Speicher	
	8	Chemische Speicher	
	9	Andere Speicher	
Einsatz von	10	Betriebsstrategien	
Speichern		Geschäftsmodelle	
Ausblick	usblick 12 Weitere Module und aktuelle Pr		


Abb. 3: Lerneinheiten des Moduls »Speicher im Intelligenten Netz«

In der anschließenden Lerneinheit »Betriebsstrategien« werden konkrete Betriebsstrategien für drei Kontexte behandelt: 1.) Betriebsstrategien in der Stromvermarktung (Erzeugungsausgleich, Systemdienstleistung), 2.) Betriebsstrategien für PV-Batterie-Systeme, 3.) Betriebsstrategien in Verbindung mit Wärmespeichern. Diese Lerneinheit baut auf allen bisherigen Lerneinheiten auf. Die Teilnehmenden sind in der Lage, verschiedene Anwendungsbereiche von Speichertechnologien zu verstehen und bewerten und können einschätzen, an welchen Märkten die gespeicherte Energie verhandelt werden kann. In der letzten Lerneinheit zum Thema Geschäftsmodelle wird der Rechtsrahmen für den Speichereinsatz aufgezeigt, anschließend werden bestehende Geschäftsmodelle verschiedener Unternehmen zum einen in der Stromvermarktung und zum anderen zur Optimierung der Eigenversorgung vorgestellt, analysiert und bewertet. Die Teilnehmenden sind dadurch in der Lage, einzuschätzen und zu beurteilen, welche Märkte ein Geschäftsmodell adressiert, welche Kunden angesprochen werden und mit welchen Methoden Profit gewonnen wird.

Den Abschluss bildet ein Ausblick in die Thematiken der Energiesystemanalyse und der Intelligenten Energienetze. Die Vorstellung von aktuellen Projekten des Fraunhofer ISE gibt einen Überblick über den aktuellen Stand der Forschung.

Modulverlaufsplan

Die Konzeption des Moduls »Speicher im Intelligenten Netz« im Blended-Learning-Format sieht folgenden Verlauf des Moduls vor:

Zu Beginn des CAS-Moduls »Speicher im Intelligenten Netz« steht eine Präsenzphase, in welcher ein fachlicher Einstieg in die Energieversorgung und eine Einführung in die Programmiersprache R geboten wird, sowie die Grundlagen der Wechselstromrechnung einführend erklärt werden. Des Weiteren dient die erste Präsenzphase einer organisatorischen Einführung, dem Kennenlernen untereinander und bietet eine technische Einweisung in die Online-Umgebung. Daran schließt sich die Online-Phase an, in der die gelernten Themen wiederholt werden können und der Block »Grundlagen von Energiesystemen und intelligenten netzen« und »Speichertechnologien«, gefolgt vom Block »SEinsatz von Speichern«, sowie der »Ausblick« freigeschalten wird. Während der sechsmonatigen Online-Phase werden an ausgewählten Stellen Online-Meetings angeboten. Die Online-Meetings dienen den Teilnehmenden dazu inhaltliche Fragen zu stellen, Themen zu vertiefen und zu diskutieren und technische Schwierigkeiten klären zu können. Zusätzlich können die Teilnehmenden innerhalb der Abschlusspräsenzphase einen Vortrag halten, welcher innerhalb eines Bonuspunktesystems in die Note der Abschlussklausur eingeht.

Die schriftliche Modulabschlussklausur wird im Rahmen der finalen Präsenzveranstaltung absolviert. Des Weiteren werden in der Abschlusspräsenzphase aktuelle Projekte aus der angewandten Forschung am Fraunhofer-Institut für Solare Energiesysteme ISE vorgestellt.

Abb. 4: Übersicht des Modulverlaufs

6 Lernziele des CAS-Moduls »Speicher im Intelligenten Netz«

		Lernziele Die Teilnehmenden
Gesamtes Modul		analysieren und bewerten unterschiedliche Speichersysteme und kennen die Möglichkeiten der Einbindung von Speichern in ein intelligen- tes Energienetz.
Grundlagen	1	
	2	verfügen über ein Grundverständnis zur Funktion und Modellierung von Speichersystemen.
	3	
Speicher-	4	vergleichen die Kenngrößen der Speicher-
technologien	5	technologien wie z.B. Wirkungsgrad, Lebensdauer, Speicherkapazität.
	6	kennen verschiedene Speichertechnologien
	7	und deren Funktionsweisen.
	8	erläutern den Energiefluss von Speichersystemen.
	9	
Einsatz von	10	bewerten unterschiedliche Anwendungen
Speichern	11	für Speichersysteme und analysieren die systemischen Auswirkungen.

Abb. 5: Zusammenfassung der Lernziele des CAS-Moduls »Speicher im Intelligenten Netz«

Die Richtziele des Moduls geben einen Gesamtüberblick zu den Lehr-/Lernzielen auf die das Modul »Speicher im Intelligenten Netz« hinarbeitet. Das Richtziel zur Beschreibung und Interpretation konventioneller sowie moderner Energiesysteme fasst die Ziele des Moduls zusammen.

Aufbau der einzelnen Lerneinheiten

Die Lerneinheiten des Moduls sind nach folgendem Ablauf aufgebaut. Im Modul »Speicher im Intelligenten Netz« kommt die Methode des Szenarienbasierten Lernens in Zyklen (SBL)^{2/3} zum Einsatz. Die szenarienbasierten Einheiten unterscheiden sich von den anderen Lerneinheiten durch den zweiten Schritt mit weiteren Diskussionsrunden und Übungsaufgaben zu den jeweiligen Szenarien.

Die in das Modul einführende Motivation steht zu Beginn jeder Lerneinheit und fasst kurz zusammen, welche Inhalte in der folgenden Lerneinheit vermittelt werden.

Eine szenarienbasierte Lerneinheit wird durch eine Modellrechnung mit der Programmiersprache R anhand verschiedener Szenarios (Geschichte, Bild, Problemstellung) motiviert. Die Inhalte innerhalb dieser Einheit werden in Gruppenarbeiten in der Präsenzphase und bei der Artikelaufgabe gelöst und führen nach der Bearbeitung zu den Ergebnissen aller Szenarien.

Eine Auflistung der E-Lectures schließt sich an den einleitenden Text bzw. an das Teilszenario an. Die E-Lectures können in beliebiger Reihenfolge bearbeitet werden.

Die Übungsaufgaben wiederholen und vertiefen das in den E-Lectures Gelernte mittels verschiedener Aufgabenformen (bspw. Beteiligung an einer Forumsdiskussion, Berechnungen, Bearbeitung von Übungsaufgaben).

Der abschließende Selbsttest zu jeder Lerneinheit dient sowohl den Lernenden als auch den Lehrenden zur Rückmeldung über die absolvierte Lerneinheit. Zusätzlich kann an dieser Stelle eine Ergebnissicherung der bearbeiteten Szenarien stattfinden.

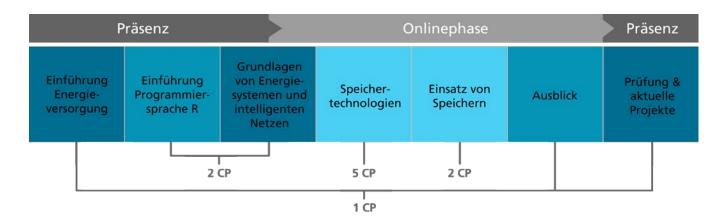
Des Weiteren werden den Lernenden zwei verschiedene Literaturhinweise zur Verfügung gestellt:

Die empfohlene Literatur muss zum Verständnis der Lerneinheit gelesen werden

Die weiterführende Literatur dient dazu interessierten und persönlich motivierten Lernenden weitere Möglichkeiten der Interessensausbildung zu bieten.

Den Teilnehmenden wird empfohlen das Modul in der vorgegebenen Struktur zu durchlaufen. Für die Teilnehmenden ist es bei Bedarf möglich den Ablauf umzustrukturieren. Allerdings ist bei einer individuellen Umorganisation der Lerneinheiten durch den Lernenden zu beachten, dass somit Inhalte aus dem Kontext gerissen werden, die aufeinander aufbauende Anordnung verloren geht und dadurch ein lückenloser Lernprozess nicht mehr gegeben sein kann.

² Weichler. J.K., Preis, L. & Pichler, A. A.. Theorie des Szenarienbasierten Lernens. In: J. Besters-Dilger & G. Neuhaus (Hg.), Modulare wissenschaftliche Weiterbildung für heterogene Zielgruppen entwickeln. Formate-Methoden-Herausforderungen. (S. 91-104). Freiburg, Rombach.


³ Weichler. J.K., Preis, L. & Pichler, A. A.. Umsetzung und Einsatz des Szenarienbasierten Lernens in der Weiterbildung. In: J. Besters-Dilger & G. Neuhaus (Hg.), Modulare wissenschaftliche Weiterbildung für heterogene Zielgruppen entwickeln. Formate-Methoden-Herausforderungen. (S. 105-118). Freiburg, Rombach.

Organisatorische Modalitäten

8.1

Leistungspunkte (Credit Points, CP)

Insgesamt ergibt das CAS-Modul 10 CP, wobei 1 CP einem Arbeitsaufwand von 30 Stunden entspricht. In der folgenden Darstellung ist die Verteilung der 10 CP aufgeschlüsselt:

8.2 Stundeneinteilung

Abb. 6: Zeiteinteilung des Moduls in Credit Points

Das gesamte Modul umfasst einen Arbeitsumfang von 300 Arbeitsstunden, die sich auf einen Zeitraum von sechs Monaten verteilen. Dieser Workload beinhaltet auch die Präsenzphasen und die Abschlussklausur.

Im Modulhandbuch wird zwischen der Folienerarbeitungszeit (FEZ; Bearbeitung der Folien und Vorlesungszeit in den Präsenzphasen) und der Selbsterarbeitungszeit (SEZ; Bearbeitung der gestellten Aufgaben) unterschieden. Die Folienerarbeitungszeit beschreibt den zeitlichen Umfang der inhaltlichen Arbeit mit Hilfe der zur Verfügung gestellten E-Lectures. Die angegebene Selbsterarbeitungszeit gibt eine zeitliche Orientierung an, in der die Inhalte des Moduls mittels Lernmethoden, Erfolgskontrollen und zusätzlicher Literatur vertieft werden sollen.

8.3 Vorkenntnisse

Für das Modul »Speicher im Intelligenten Netz« ist es unabdingbar Gleichungssysteme aufstellen und umformen zu können. Auch das Rechnen mit der Exponentialfunktion und dem Logarithmus gehört zu den Grundvoraussetzungen. Das Beherrschen von Differentialgleichungen und komplexen Zahlen ist von Vorteil. Einfache Grenzwertbildungen gehören zu weiteren mathematischen Vorkenntnissen.

Die wichtigsten physikalischen Vorkenntnisse sind Berechnungen im Gleichstromkreis und Kenntnisse über den Widerstand, die Spule und den Kondensator. Dazu gehören das Ohm'sche Gesetz und die Kirchhoff'schen Maschen- und Knotenregeln. Es werden grundlegende Kenntnisse zu den Einheiten von Energie und Leistung benötigt. Innerhalb des Moduls wird es jedoch die Möglichkeit geben die eben genannten Themen zu wiederholen und zu vertiefen

Diese Vorkenntnisse sollen sicher beherrscht werden: Aufstellen, Umformen und Lösen von Gleichungssystemen Rechnen mit der Exponentialfunktion und dem Logarithmus Grundlegende Grenzwertberechnungen (z.B. Umgang mit den Schreibweisen von Grenzwerten, Berechnung von Grenzwerten einfacher gebrochen-rationaler Funktionen)

Es ist von Vorteil, folgende Vorkenntnisse zu haben:

- · Komplexe Zahlen
- Grundlegendes Verständnis von Differenzialgleichungen (z.B. Verständnis über die Komponenten in einer Differenzialgleichung und dessen Bedeutung)

Abb. 7:
Übersicht über die Vorkenntnisse für das CAS-Modul
»Speicher im Intelligenten
Netz«

- Berechnungen im Gleichstromkreis (Ohm'sches Gesetz, Kirchhoff'sche Regeln)
- Verhalten eines Widerstandes, einer Spule, eines Kondensators im Gleichstrom-Schaltkreis
- Grundlegende Kenntnisse zu Einheiten von Energie und Leistung

9

Prüfungsordnung des CAS-Moduls »Speicher im Intelligenten Netz«

9.1

Prüfungen, Prüfungszulassungsvoraussetzungen, Bonuspunktesystem

Zusätzlich zu den Zulassungsvorrausetzungen zur schriftlichen Abschlussprüfung können 10 Bonuspunkte durch einen freiwilligen Einzelvortrag in einem Online-Meeting oder in der Abschlusspräsenzphase erreicht werden. Hierbei ist das Thema mit der verantwortlichen Lehrperson im Vorhinein abzuklären. Das Vortragthema sollte den beruflichen Kontext des Vortragenden mit den Lehrinhalten des Moduls »Speicher im Intelligenten Netz« verbinden.

Die Bedingungen für die Zulassung zur Abschlussklausur und die Punktevergabe werden in der folgenden Tabelle dargestellt:

Aufgaben & Prüfungen	Beschreibung	Punkte
Artikel »Speicher Szean-	- Verfassen eines Artikels basierend auf den Ergebnissen	20 Punkte pauschal bei
rio«	einer Modellrechnung mit der Programmiersprache R.	Erfüllung der Kriterien:
	Wichtiger Hinweis: Weder die Programmierung	1) Artikel zum zugewiese-
	noch das Einlesen der Szenariodaten in das Modell	nen Thema im angeforder-
	und das Rechnen lassen des Modells sind Pflicht!	ten Umfang fristgerecht
	Pflichtaufgabe ist, einen Artikel über die Ergbnisse	einreichen
	des Modellierungslaufs zu schreiben. Der Program-	2) Zu zwei zugewiesenen
	miercode wird, falls ein/eine Teilnehmende(r) micht	Artikeln Peer Feedback
	selbst programmieren möchte als Musterlösung zur Ver-	geben innerhalb der Frist
	fügung gestellt. Falls in/eine Teilnehmende(r) auch nicht	3) Überarbeitung des Arti-
	die Musterlösung verwenden möchte um das Modell	kels und Einreichung beim
	selbst zu starten, werden auf Anfrage die Ergebnisse der	Organisationsteam
	jeweiligen Szenariomodellrechnung für das Verfassen	4) Blog – Artikel freigeben
	des Artikels zur Verfügung gestellt.	Diese Punkte sind Voraus-
	- die Teilnehmenden sollen zu dem Ihnen zugeordneten	setzung um zur schriftlichen
	Thema einen Artikel verfassen; die Struktur des Artikels	Abschlussprüfung zugelas-
	und welche Fragen er beantworten soll wird im Modul	sen zu werden.
	bekannt gegeben	
	- harter Abgabetermin (keine nachträgliche Einreichung	
	möglich); der Artikel muss als PDF über den entspre-	
	chenden Link auf der ILIAS Plattform hochgeladen	
	werden	
	- 2 Mal muss ein Peer-Feedback für 2 andere Artikel	
	gegeben werden innerhalb einer harten Frist (nachträgli-	
	ches Einreichen des Peer-Feedbacks ist nicht möglich)	
	- Der Autor bekommt das Feedback und überarbeitet	
	den Hinweisen entsprechend den Artikel.	
	- Der Artikel wird als Word-Dokument an die Modul-	
	organisation geschickt.	
	- Das Organisationsteam lädt den Artikel als Blog-Ein-	
	trag auf die ILIAS Plattform hoch	
	- Der Autor muss den Artikel nach Benachrichtigung frei	
	geben	

Aufgaben & Prüfungen	Beschreibung	Punkte
Selbsttests	Bestehen aller Selbsttests durch Erreichen von mindes-	Anmerkung: Die Selbsttests
	tens 50% der Punkte pro Selbsttest	dienen der freiwilligen
	(Anmerkung: zwei Fehlversuche je Lerneinheit erlaubt,	Selbstkontrolle und sind
	sonst wird ein Gespräch mit der Lehrperson empfohlen)	deshalb nicht verpflichtend.
Schriftliche Abschlussprü-		100 Punkte
fung		
Bonus durch Vortrag (nur		10 Punkte
in Absprache mit dem		
Dozenten möglich)		
Die Note 1,0 wird bei 120 P	unkten vergeben.	Maximal erreichbare
		Punktzahl:
Bestanden ist das Modul be	Bestanden ist das Modul bei 60 Punkten.	

9.2 Notenschlüssel

Punkte	0 -	60 -	67 -	74 -	80 -	86 -	92 -	98 -	104 -	110 -	117 -
	59	66	73	79	85	91	97	103	109	116	120
Note	n.b.	4	4+	3-	3	3+	2-	2	2+	1-	1

n.b. = nicht bestanden

10 Gesamtübersicht über das CAS-Modul »Speicher im Intelligenten Netz»

	Le	erneinheiten	Zeitaufwand FEZ SEZ
Grundlagen	1	Einführung Energieversorgung	6 h 4 h
	2	Einführung Programmiersprache R	5 h 25 h
	3	Grundlagen von Energiesystemen und intelligenten Netzen	5 h 25 h
Speicher-	4	Klassifizierung von Speichertechnologien	3 h 7 h
technologien	5	Systemintegration von Speichern	5 h 15 h
	6	Elektrochemische Speicher	5 h 30 h
	7	Thermische Speicher	5 h 25 h
	8	Chemische Speicher	5 h 25 h
	9 Andere Speicher		5 h 20 h
Einsatz von	10	Betriebsstrategien	8 h 22 h
Speichern	11	Geschäftsmodelle	10 h 20 h
Ausblick	12	Weitere Module und aktuelle Projekte	10 h 10 h
Symbole		0 - 3 h	9 - 12 h
	12	- 15 h 15 - 18 h 18 - 21 h	21 - 24 h
	24	- 27 h 27 - 30 h 30 - 33 h	33 - 35 h

11 Darstellung der einzelnen Lerneinheiten des CAS-Modul »Speicher im Intelligenten Netz»

1. Lerneinheit Einführung Energieversorgung							
Stundeneinteilung	ilung Vorkenntnisse Anmerkungen						
FEZ: 6 h SEZ: 4 h	keine	Präsenzphase Onlinephase					
Lehrinhalte	 Wandel in der Energieversorgung Stromnetzaufbau Intelligente Energienetze Ziele der Speicher im Energiesystem 						
LERNZIEL	LERNZIEL Die Teilnehmenden erlangen ein Grundverständnis über o Komponenten der Energieerzeugung, des Energietranspo über die Bedeutung der Einbindung von Speichern.						
Methodische Umsetzung	I. Vorlesung in der Präsen: II. Wiederholende Selbster Einführende Motivatio	arbeitung in der Onlinephase					
	E-Lecture						
ERFOLGSKONTROLLE	keine						
Literaturangabe	LITERATURANGABE © Fraunhofer ISE. B. Wille-Haussmann. Intelligente Energienetze (IEN) www.energy-charts.de/ www.vdecom/						

2. Lerneinheit Einführung Programmiersprache R STUNDENEINTEILUNG VORKENNTNISSE ANMERKUNGEN FEZ: 5 h SEZ: 25 h Kenntnisse über Programmiersprachen oder Grundlagen der Programmierung (von Vorteil) Präsenzphase Onlinephase

LEHRINHALTE	 Grundlagen der Arbeit mit R Datentypen und Strukturen Daten speichern und laden Programmieren in R Grafik erstellen 	
Lernziel	Die Teilnehmenden eignen sich praktische Basis-Funktionen der Programmiersprache R an, damit sie es für einfaches Analysieren und Simulieren von Energiesystemen nutzen können.	
Methodische Umsetzung	I. Vorlesung in der Präsenzphase II. Wiederholende Selbsterarbeitung in der Onlinephase: Einführende Motivation E-Lecture rechnerische und verständnisbasierte Programmieraufgaben	
ERFOLGSKONTROLLE	Musterlösung der Programmieraufgaben	
Literaturangabe	Bauer, A. & Walter, S. (2012). Einführung in R.	

3. Lerneinheit

Grundlagen von Energiesystemen und intelligenten Netzen

Stundeneinteilung	Vorkenntnisse	Anmerkungen
FEZ: 5 h SEZ: 25 h	Keine, aber vertrauter Umgang mit Lastprofilen ist vorteilhaft	Präsenzphase Onlinephase

Lehrinhalte	 Grundlagen von Energiespeicher (Energieformen, energetische Reihe) Wichtige Kenngrößen (Lastprofile, Jahresdauerkennlinie, Residuallast, Autarkiegrad)
Lernziel	Die Teilnehmenden benennen die wichtigen grundlegenden Begriffe und Kenngrößen, mit deren Hilfe sie die Energiesysteme und Speichersysteme besser verstehen und bewerten können.
METHODISCHE UMSETZUNG	I. Vorlesung in der Präsenzphase II. Wiederholende Selbsterarbeitung in der Onlinephase: Einführende Motivation E-Lecture Programmieraufgabe Selbsttest
Erfolgskontrolle	Musterlösung der Programmieraufgabe und Bestehen des Selbsttests
Literaturangabe	© Fraunhofer ISE. B. Wille-Haussmann. Intelligente Energienetze (IEN) www.volker-quaschning.de/software/unabhaengig/index.php

4. Lerneinheit Klassifizierung von Speichertechnologien STUNDENEINTEILUNG VORKENNTNISSE ANMERKUNGEN FEZ: 3 h SEZ: 7 h 3. Lerneinheit Online-Phase

Lehrinhalte	 Speicherbedarf Definition Speicher Speichertechnologien Wichtige Kenngrößen von Speichern
Lernziel	 Die Teilnehmenden wissen über die verschiedenen Speicherarten und können diese klassifizieren. Wichtige Kenngrößen zur Bewertung des Speichers werden verstanden.
Methodische Umsetzung	E-Lecture Selbsttest
ERFOLGSKONTROLLE	Bestehen des Selbsttests
Literaturangabe	Sterner, M. & Stadler, I. (2014). Energiespeicher – Bedarf, Technologien, Integration. Berlin: Springer-Verlag, S. 26 – 46.

5. L e r n e i n h e i t Systemintegration von Speichern		
Stundeneinteilung	Vorkenntnisse	Anmerkungen
FEZ: 5 h SEZ: 15 h	AC-, DC-Strom, 3. Lerneinheit, 4. Lerneinheit	Online-Phase

Lehrinhalte	 Einführung in Systemintegration Übersicht über Stromrichter Wechselrichter Speicherintegrationskonzepte
LERNZIEL	Die Teilnehmenden verstehen die Wechselrichtertechnik sowie wichtige Aspekte von Systemintegration/Netzintegration von Speichern.
Methodische Umsetzung	E-Lecture
	Programmieraufgabe
	Selbsttest
ERFOLGSKONTROLLE	Musterlösung der Übungen und Bestehen des Selbsttests
Literaturangabe	www.sma.de

6. L e r n e i n h e i t Elektrochemische Speicher		
Stundeneinteilung	Vorkenntnisse	Anmerkungen
FEZ: 5 h SEZ: 30 h	4. Lerneinheit	Online-Phase
<u> </u>		

Lehrinhalte	 Grundlagen elektrochemischer Energiespeicher Leistungsbeeinflussende Faktoren der Batterie Batterietechnologien Einführung Batteriemodellierung
Lernziel	 Die Teilnehmenden erlangen theoretische Kenntnisse über Batteriespeicher: physikalisches Arbeitsprinzip, wichtige Charakteristiken der verschiedenen Batterietechnologien sowie deren Vor- und Nachteile. Die Teilnehmenden verstehen Ziele der Speichermodellierung.
Methodische Umsetzung	E-Lecture Programmieraufgabe Selbsttest
ERFOLGSKONTROLLE	Musterlösung der Übungen und Bestehen des Selbsttests
Literaturangabe	Sterner, M. & Stadler, I. (2014). Energiespeicher – Bedarf, Technologien, Integration. Berlin: Springer-Verlag, S. 197-293.

	7. Lerneinheit Thermische Speicher	
Stundeneinteilung	Vorkenntnisse	Anmerkungen
FEZ: 5 h SEZ: 25 h	4. Lerneinheit	Online-Phase

Lehrinhalte	 Thermodynamische Grundlagen Sensible Energiespeicher Latente Energiespeicher Thermochemische Energiespeicher Einführung thermische Speichermodellierung
Lernziel	Die Teilnehmenden verfügen über ein Verständnis über gängige thermische Speichersysteme (physikalisches Arbeitsprinzip, wichtige Charakteristiken der verschiedenen Power-to-Heat- Technologien) und können deren Vor- und Nachteile einschätzen.
Methodische Umsetzung	E-Lecture Programmieraufgabe Selbsttest
ERFOLGSKONTROLLE	Musterlösung der Übungen und Bestehen des Selbsttests
LITERATURANGABE	Sterner, M. & Stadler, I. (2014). Energiespeicher – Bedarf, Technologien, Integration. Berlin: Springer-Verlag, S. 535-572.

8. Lerneinheit Chemische Speicher		
Stundeneinteilung	Vorkenntnisse	Anmerkungen
FEZ: 5 h SEZ: 25 h	4. Lerneinheit	Online-Phase

Lehrinhalte	 Grundlagen chemischer Energiespeicher Power-to-gas-Wasserstoff Power-to-gas-Methan
LERNZIEL	Die Teilnehmenden erlangen theoretische Kenntnisse über Power- to-Gas-Technologien (Wasserstoff und synthetisches Erdgas): Arbeitsprinzip, wichtige Charakteristiken, Vor- und Nachteile.
METHODISCHE UMSETZUNG	E-Lecture Selbsttest
ERFOLGSKONTROLLE	Bestehen des Selbsttests
Literaturangaben	Sterner, M. & Stadler, I. (2014). Energiespeicher – Bedarf, Technologien, Integration. Berlin: Springer-Verlag, S. 295-449.

9. Lerneinheit Andere Speicher		
Stundeneinteilung	Vorkenntnisse	Anmerkungen
FEZ: 5 h SEZ: 20 h	4. Lerneinheit	Online-Phase

Lehrinhalte	 Elektrische Speicher (Kondensator, Superkondensator, Spule, Supraleitende Spule) Mechanische Speicher (Pumpspeicherkraftwerk, Schwungradspeicher, Druckluftspeicher)
Lernziel	Die Teilnehmenden erlangen theoretische Kenntnisse über mechanische und elektrische Speichereinsätze: physikalisches Arbeitsprinzip, wichtige Charakteristiken der verschiedenen Speichertechnologien und deren Vor- und Nachteile.
Methodische Umsetzung	E-Lecture Selbsttest
ERFOLGSKONTROLLE	Bestehen des Selbsttests
Literaturangabe	Sterner, M. & Stadler, I. (2014). Energiespeicher – Bedarf, Technologien, Integration. Berlin: Springer-Verlag, S. 163-195.

10. Lerneinheit Betriebsstrategien								
Stundeneinteilung	Vorkenntnisse	Anmerkungen						
FEZ: 8 h SEZ: 22 h	3. – 9. Lerneinheit	Online-Phase						
Lehrinhalte	 Betriebsstrategien in der Stromvermarktung (Erzeugungsausgleich, Systemdienstleistung) Betriebsstrategien für PV-Batterie-Systeme Betriebsstrategien in Verbindung mit Wärmespeichern 							
Lernziel	 Die Teilnehmenden verstehen und bewerten verschiedene Anwendungsbereiche von Speichertechnologien und können einschätzen, an welchen Märkten die gespeicherte Energie verhandelt werden kann. Die Teilnehmenden kennen einige Betriebsstrategien von PV- Batteriesystemen und Wärmespeichersystemen. 							

|--|

Einführende Motivation

E-Lecture

Selbsttest

ERFOLGSKONTROLLE

Bestehen des Selbsttests

LITERATURANGABE

Sterner, M. & Stadler, I. (2014). Energiespeicher – Bedarf, Technologien, Integration. Berlin: Springer-Verlag, S. 630-701.

Moshövel, J. al. (2015). PV-Nutzen. Analyse des wirtschaftlichen, technischen und ökologischen Nutzens von PV-Speichern.

© Fraunhofer ISE. C. Senkpiel. Energiesystemanalyse (ESA).

11. Lerneinheit Geschäftsmodelle									
Stundeneinteilung	Vorkenntnisse	Anmerkungen							
FEZ: 10 h SEZ: 20 h	10. Lerneinheit	Online-Phase							
Lehrinhalte	Rechtsrahmen für den Speich Geschäftsmodelle in der Stron								

Lehrinhalte	 Rechtsrahmen für den Speichereinsatz Geschäftsmodelle in der Stromvermarktung Geschäftsmodelle zur Optimierung der Eigenversorgung 					
Lernziel	Die Teilnehmenden analysieren und bewerten Geschäftsmodelle unterschiedlicher Unternehmen. Sie können verstehen und beurteilen, welche Märkte ein Geschäftsmodell adressiert, welche Kunden angesprochen werden und mit welchen Methoden Profit gewonnen wird.					
Methodische Umsetzung	Einführende Motivation					
	E-Lecture					
	Selbsttest					
Erfolgskontrolle	Bestehen des Selbsttests					
Literaturangaben	Schallmo, D. Geschäftsmodelle erfolgreich entwickeln und implementieren. Jülch et al. (2017). Anwenderleitfaden Energiespeicher. Seite 12. www.bmwi.de/ www.energie-experten.org/					

12. Lerneinheit Ausblick I – Energiesystemanalyse							
Stundeneinteilung (gesamt)	Vorkenntnisse	Anmerkungen					
FEZ: 10 h SEZ: 10 h	keine	Online-Phase					

Lehrinhalte	 Einführung und Grundlagen Komponenten des Energiesystems Energiemärkte Energiesystemanalyse
Lernziel	Die Teilnehmenden ordnen die Bedeutung von Energiesystemanalyse ein.
Methodische Umsetzung	Einführende Motivation E-Lecture
Erfolgskontrolle	keine
Literaturangabe	keine

12. Lerneinheit

Ausblick II – Intelligente Energienetze

Stundeneinteilung (gesamt)	Vorkenntnisse	Anmerkungen
FEZ: 10 h SEZ: 10 h	keine	Online-Phase

Lehrinhalte	Einführung und GrundlagenStromnetzeIntelligente Energienetze					
LERNZIEL	Die Teilnehmenden ordnen die Bedeutung von intelligenten Energienetzen ein.					
METHODISCHE UMSETZUNG	Einführende Motivation E-Lecture					
ERFOLGSKONTROLLE	keine					
Literaturangabe	keine					

12. L e r n e i n h e i t Ausblick III – Aktuelle Projekte							
Stundeneinteilung (gesamt)	Vorkenntnisse	Anmerkungen					
FEZ: 10 h SEZ: 10 h	keine	finale Präsenzphase (umfasst Klausur)					

LEHRINHALTE	Aktuelle Projekte
LERNZIEL	Die Teilnehmenden erfassen den Bezug zu aktuellen und hochbrisanten Themen in der Forschung und Entwicklung im Bereich der Energiesystemtechnik.
METHODISCHE UMSETZUNG	I. Vorlesung II. Vorträge der Teilnehmenden auf Freiwilligenbasis
ERFOLGSKONTROLLE	Abschlussklausur zum Modul
Literaturangabe	keine

Abbildungsverzeichnis

		•••	_	٠.	,-	-	٠.	_	_	 •	
Ahł	1	۱٠									

ADD. 1.
Baukastenprinzip, das dem Projekt »Freiräume für wissenschaftliche Weiterbildung
- Windows for Continuing Education« zugrunde liegt5
Abb. 2:
Schematische Darstellung der Modulstruktur des DAS-Weiterbildungsangebots »Ener-
giesystemtechnik« mit Angabe der Leistungspunkte (Credit Points, CP)7
Abb. 3:
Lerneinheiten des Moduls »Speicher im Intelligenten Netz«10
Abb. 4:
Übersicht des Modulverlaufs11
Abb. 5:
Zusammenfassung der Lehrziele des CAS-Moduls »Speicher im Intelligenten Netz«12
Abb. 6:
Zeiteinteilung des Moduls in Credit Points14
Abb. 7:
Übersicht über die Vorkenntnisse für das CAS-Modul »Speicher im Intelligenten Netz«
15